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Abstract
Grasping objects with the right amount of force, neither to soft or to hard, is still a problem for robots. This thesis aims
to estimate the necessary grasp force from a single photo. Therefore the force estimation is formally split into estimating
the friction coefficient and the mass of the object. To predict the friction coefficient Convolution Neural Networks were
used, with moderate results, because a strong correlation could not be learned. By taking new photos in a controlled
environment the prediction could be improved. In order to deal with uncertainty of the predicted friction coefficient an
extension is proposed by predicting a discrete probability distribution over all friction coefficients. The mass of the object
is predicted by making use of a image segmentation mask and Gaussian Processes. To retrieve the final grasp force both
predictions are multiplied. Experiments on the real robot showed that the quality of the estimation is mixed. Three out
of eight experiments had a success rate below 50%.

Zusammenfassung
Das Hochheben von Objekte mit der richtigen Kraft, weder zu sanft oder zu fest, ist nach wie vor ein Problem fuer Robo-
ter. Diese Arbeit zielt darauf ab, die notwendige Greifkraft nur anhand eines Fotos vorherzusagen. Hierfuer wird die Kraft
zu erst in den Reibungskoeffizienten und die Masse aufgeteilt. Der Reibungskoeffizient wird mithilfe eines neuronalen
Netzes vorhergesagt. Die Ergebnisse ueberzeugen nicht vollstaendig, da keine starke Korrelation gelernt werden konn-
te. Die Ergebnisse konnten jedoch mit neuen Fotos, welche in einer kontrollierten Umgebung aufgenommen wurden,
verbessert werden. Um Unsicherheiten in der Vorhersage des Reibungskoeffizienten zu kompensieren, wird eine Erwei-
terung vorgeschlagen, indem eine diskrete Wahrscheinlichkeitsverteilung ueber alle Reibungskoeffizienten vorhergesagt
wird. Die Masse des Objekts wird mit Hilfe einer Bildsegmentierungsmaske und "Gaussian Processes"vorhergesagt. Um
die endgueltige Greifkraft zu erhalten, werden beide einzelnen Vorhersagen multipliziert. Experimente auf dem echten
Roboter zeigten, dass die Qualitaet gemischt ist. In drei von acht Experimenten war die Erfolgsrate unter 50%.
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1 Introduction
Robots are becoming more and more important in our daily lives. To assist humans, robots should be able to perform
dexterous manipulations tasks with their hands, but they still struggle to complete tasks considered easy for humans, e.g.,
lifting objects. Such tasks can be split into three main parts: Observing the scene, planning the movements and executing
the task. When this rough scheme is specified for lifting objects, following procedure can be seen as state-of-the-art.
Modern object detection approaches can detect objects at a rate of 5Hz with a success rate of at least 70% [1]. However,
when lifting an object with a robotics hand, detecting it in the scene is only the first step. After a successful detection the
placing of the fingers onto the object and the lifting motion must be planned [2]. As a last step the robotics hand needs
to apply sufficient forces on the object to successfully lift it up.
Yet, when executing this task, the last step is still a crucial problem for robots because they are not equipped with enough
sensors to recover useful information when grasping an object. The necessary information would include data which
could be used to gain the tactile feedback of the grasp.
To overcome this problem, tactile fingertip sensors have been developed [3]. With this new form of finger tips, the force,
which is applied to the object, can be measured. It is even possible to predict or detect occurring slip, as shown in [4]
and [5]. Without such sensors the robot has to rely, e.g., solely on his vision or torque sensors at the joints, to recognize if
he has to increase the force to prevent a drop of the object. Alternatively the robot can assume just a fixed joint position
configuration for its fingers without reacting to the consequences for the object. [4] and [5] developed controllers on
top of their respective slip prediction or detection to control the force onto the object. With the help of this additional
controller they successfully managed to lift different objects.

1.1 Motivation

In this thesis an estimation of the necessary force to grasp an object is proposed. With the help of a tactile sensor it is
possible to measure the applied force onto an object. When the estimated force is reached across all tactile sensors on
the hand, it is possible to successfully execute the last step as in the previous section described, lifting the object.
Briefly, the force is estimated by predicting two different variables, the friction coefficient and the mass of the object. The
resulting product of the predictions multiplied by the gravity is proportional to the desired force. The objective of this
thesis is to develop two predictive models, one that estimates the friction coefficient and one that predicts the mass of
the object.

Is it really necessary to estimate the force in advance when such controllers exist to control the force by detecting
slip?
When lifting an object, two possible extreme cases can occur. On the one side a fragile object, e.g. a banana or a plastic
cup, might be damaged as applying too high forces could deform the object. On the other side, when applying too little
force, the object might slip quickly through the hand of the robot. Such a problem might occur when you hand a heavy
object, like a brick, to the robotic hand, which assumes as little force as possible to apply.

Why predicting from photos and not directly providing the necessary force?
In scenarios where no operator can provide a force estimation it is necessary to predict it. One of the simplest task for a
robot is taking a photo of the scene, which is the easiest and fastest way to obtain a digital representation of the desired
object. Hence, a prediction based on a photo or multiple photos can be done by the robot itself if the operator can not
provide any insight. To generalize best, a prediction solely based on a single photo is desired. Nonetheless, multiple
photos should increase the prediction quality.

1.2 Related Work

As already mentioned, [4] and [5] propose a method to predict or detect slip with the same BioTac fingertip sensors [3].
[6] and [7] suggest similar methods but with their own tactile sensors respectively. Despite the different slip prediction
or detection, in general all grasp force controllers work the same: Depending on the slip state, the force onto the object
is increased and the grasp is stabilized. The crucial point, where this thesis is going to assist these controllers, is in the
beginning. At this point the thesis aims to predict the forces as accurately as possible so that the controllers do not need
to adjust the grasp force. Existing controllers start with different forces applied to the object as outlined in the following.
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[4] and [7] only start with the object in contact, the minimum force possible. As a result, the hand only touches the
object. From that point on the force is subsequently increased while the object is assumed to be slipping.
In contrast to [4] and [7], [5] also start with a fixed value across all objects, this guess is based on known materials and
their interaction with the sensors skin [8]. [5] even state "Since the initial friction coefficient is not estimated accurately,
slip may occur during the lifting", what shows that there is room for improvement at the early stage of grasping.
[6] use a more sophisticated way to determine the initial force. In a preprocessing step, the "Tactile Exploration Phase",
they slowly slide the finger over the surface of the object. Based on the results of the sensor, the friction coefficient is
estimated. A similar approach was chosen by [9]. They propose a new finger tip sensor, which estimates the friction
coefficient directly without sliding over the object, only by touching it. Yet, one thing that all of these methods have in
common is the usage of tactile feedback in advance. Estimating the friction coefficient solely from photos, has not been
deeply explored previously.
Regarding the second prediction, the mass estimation from photos, prior work is also sparse.
[10] predict the weight of cows by extracting various information, including the wither and hip height as well as the hip
width and the body length. With the help of such properties they showed, it is possible to predict the weight of cows
from photos.
A more image processing oriented approach is used by [11], where the weight of pigs is predicted. After taking only
one image of the animal from the top, the image is segmented and the pig is masked out. Based on this segmentation
mask properties like the area covered and the body length are checked for correlation with the weight. With the found
correlation the weight for new pigs can be predicted. [12] successfully use a similar approach.
[13] suggest a different approach by using the image segmentation mask, but also detecting the edges of the object.
With these detected edges they determine the height of the object and the area covered. The ascertained values help
estimating the volume of the object and so the weight can be calculated.
Nevertheless, all described approaches have in common that the density is assumed to be known or fixed. [13] determine
the density from a predefined table of densities of known objects. This approach only works for known objects, as unseen
objects are not listed in the table. For the prediction of the weight of animals, the density is expected to be always equal
for each animal type.

1.3 Outline

In Chapter 2 the foundations, which are necessary to understand the thesis, are presented. First, the background about
grasping an object (Section 2.1) and second, the basic mathematics necessary for the model definitions (Section 2.2,
2.3) are explained. With this knowledge, the problem is formally defined in Chapter 3. The split between the different
models (Section 3.1, 3.2 and 3.3) is explained and formulated. The used objects (Section 4.1), the robotic setup (Section
4.2), and the object survey (Section 4.3) as well as the attempt of solving the previously defined problem (Section 4.4) is
described in Chapter 4. In Chapter 5, first, the results of the different models (Section 5.1 and Section 5.2) are discussed.
Second, a theoretical evaluation in Section 5.3 was made. Third, to improve the results new improved photos of the
object were taken (Section 5.4). Fourth, with the help of the new photos multiple final predictions (Section 5.5) were
made and evaluated on the robotic setup to close the loop. Last, an overview over next possible steps is given in Chapter
6.
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2 Foundations/Background
By analyzing the question "Can we predict grasp forces from photos" the desired task can be split into two parts. First,
on the tactile side, one has to understand the basics of grasping an object to predict the forces. Second, one has to
understand how to make a prediction based on photos.
In the following the required background for these two parts is given.

2.1 Grasping

Grasping of an object can be accomplished by several methods. For simplicity of explanation, two possible ways are
presented in the succeeding.
The robot could either make use of the geometric representation of the object and perform a form closure on the object
[14]. Or the robot could use the friction between the object and its robotic fingers by applying enough force to overcome
gravity or any other external applied forces and moments, performing a force closure [15]. A comparison between the
two types is illustrated in Figure 2.1, while a brief explanation of both is given in the following sections.

2.1.1 Form Closure

The form closure only relies on the placement of the contacts on the object. For each contact, a constraint is introduced,
which is unilateral and frictionless. Therefore, the force is always normal to the surface at the contact. Because the
constraints are unilateral and frictionless, for each contact a contact force on the object is given.
When in three-dimensional space the possible infinitesimal movements of the rigid object are defined by the three Carte-
sian linear velocities captured in v as well as by three Cartesian angular velocities in ω, the goal for a successful grasp
in form closure is to find a set of contact forces that compensate external forces and moments including gravity. When
either multiple forces or moments are applied on the object, a separate sum over all forces and moments can be made
and seen as a single force and moment.
[14] showed that for a grasp in a two-dimensional space four contact forces are required to fully compensate the external
forces and moments for any shape. An example of a possible object and a set of contact points in the two-dimensional
space is shown in Figure 2.1a. [16] extended this generalization for the three-dimensional space, discovering that seven
contact forces are needed to compensate all possible velocities.

2.1.2 Force Closure

In order to understand force closure, first, a very basic concept of friction is presented, the Coulomb Friction Model
(CFM). Briefly explained, when a normal force ~Fn with a magnitude of fn > 0 is applied, the resulting tangential force ~Ft
has a magnitude of

ft ≤ µ fn (2.1)

but not less then zero. The direction of the force is always against a possible movement. The variable µ, the friction
coefficient, is empirically determined between the two contacting materials [17].
With the help of the friction coefficient a friction cone can be constructed at the point of contact. The cone, with an
opening angle equal to µ/2, is the area in which the direction of the force contact must be located. If the contact force
direction is within this cone, it is guaranteed that the finger does not move on the surface of the object. As a result, the
tangential contact force is applied onto the object and can compensate external forces and moments. However the object
might still slip if the tangential force is too small because the compensation capabilities are limited by Equation 2.1.
An extension to the CFM, which can be made, is the soft-finger contact. Using this contact model an additional moment
around the normal axis is introduced besides the occurring tangential force. Like the tangential force the moment can be
calculated by a coefficient, the torsional friction coefficient [18].
For the simplicity of the model, only the CFM is used and it is assumed that the applied force is always normal to the
object. A force closure grasp is now defined by its normal contact forces and their resulting tangential contact forces. In
comparison to the form closure grasp, here, a contact results in two contact forces instead of one single contact force.
Once again, the grasp can be categorized as successful if all external applied forces and moments can be compensated
with the help of the contact forces.
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(a) Form closure in a two-dimensional space using four contacts
(green) and the resulting contact forces onto the object
(blue)

(b) Force closure in a two-dimensional space using two contacts
(green): When using the Coulomb Friction Model the two
contacts could be modeled like the form closure (blue).

Figure 2.1.: Form closure and force closure in comparison: For both grasps the four contact force constraint shown in [14]
is satisfied and the resulting forces onto the object can compensate the external force (yellow). Please note
that the length of the force vectors do not indicate the magnitude.

2.1.3 Comparison between Form Closure and Force Closure

In Figure 2.1 both closure types can be seen in comparison. In each scenario the only external force applied is the weight
force indicated by a yellow arrow, while the blue arrows show the final force direction of the contact point. As explained
in Section 2.1.1, in the two-dimensional space four contact points are required. Thus the object in Figure 2.1a is safely
secured with a form closure grasp. In contrast, when using the CFM, the single contacts in Figure 2.1b, are modeled
with an additional tangential force onto the object, resulting into two contact forces per contact. With this property every
force closure problem can be modeled as an equivalent form closure problem. This kind of equivalence is shown in Figure
2.1b, where two contacts (green) are applied on the object and their respective form closure problem is shown in blue.
Once again, the object is secured because the four finger constraint is satisfied.

2.1.4 Tactile Sensors

On each finger of the robotic hand a tactile sensor is mounted. The sensor is called BioTac and is developed by the
company Syntouch in the United States.1 The sensoring within the finger is based on the concept of [3] while the skin
of the finger goes back to [8]. A short description of this sensor is given in the following, accompanied by an illustration
(Figure 2.2a) and a real example (Figure 2.2b) of the sensor in Figure 2.2 [19].
As seen in Figure 2.2a under the elastomeric skin multiple sub sensors are placed on the rigid core. Between the skin
and the finger core an incompressible conductive fluid, most of the times plain salt water, is filled. The skin, protecting
all sensors, is fixed with a fingernail, which can be seen in Figure 2.2b. In the finger itself three sensor that measure five
different variables in total, are built in.

Thermistor
The thermistor is used to observe the temperature, as well as the heat flow.

Hydro-Acoustic Pressure Sensor
In the back of the BioTac sensor the hydro-acoustic pressure sensor is located. This sensor measures the dynamic fluid
pressure in addition to the absolute fluid pressure. The dynamic fluid pressure is the vibration, which arises from to the
non-plane skin. For measuring force the absolute fluid pressure is the most important measured quantity.

1 Syntouch Website: https://www.syntouchinc.com/
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(a) Illustration of a BioTac sensor [19] (b) Picture of a BioTac sensor [19]

Figure 2.2.: Illustration and picture of a BioTac sensor side by side

The absolute fluid pressure PDC is sampled at 100Hz while the dynamic fluid pressure PAC is measured with 2200Hz. [5]
used the PAC to classify slip, while [4] also made use of the other sensor data to predict slip.
In fact, the absolute fluid pressure value PDC is more important for predicting the force for a stable grasp. This pressure
is proportional to the applied force. Hence, the applied force can be calculated from the measured PDC and vice versa.
Yet there is no actual interest in explicitly stating the force for this thesis. As a result, this step is left out for convenience.

Impedance Sensing Electrodes
Across the whole finger tip 19 impedance sensing electrodes are spread. If the skin is deformed nearby an electrode, a
change in the voltage is registered. With the voltage information of 19 electrodes in total an estimation of the normal
direction of the touched surface can be made by mapping the output of these electrodes onto the three vectors forming a
valid coordinate frame. It can be calculated where the object touches the finger and with the help of the pressure sensor
even the force along each axis [4], [5].

2.2 Neural Networks

Neural Networks (NNs) are based on human brain neurons and their information processing [20]. Various types of neural
networks exist, but later only the multilayer feed-forward NN is used to predict the friction coefficient. Ergo, only the
concepts needed for this specific NN are explained.
As the name suggests, such a multilayer feed-forward NN consists of multiple layers. The core of such a layer are the
neurons, an exemplary illustration of the i-th neuron is shown in Figure 2.3a. As an input for the neuron either the initial
data or the output of the previous layer of neurons serves. In addition, a bias term – 1 – is appended to the input. In the
neuron itself every input in j is multiplied by a weight w j,i and summed up. The result of the sum is fed into an activation
function σ of the neuron. The output outi of the activation function is also the output of the neuron. If the neuron is in
the last layer of the NN, this output is as well the output of the complete NN.
This interaction leads to a fully connected net of neurons between each layer. An example network is shown in Figure
2.3b. Each layer has a fixed amount of neurons and the additional bias term. From the three-dimensional input layer
a connection to every neuron in the next layer is established. Since this layer is located between input and output, it is
called a hidden layer. Once again, the additional bias term is appended. The results of each neuron in the hidden layer is
passed forward to the final layer, the output layer. The amount of hidden layers and their respective amount of neurons
should be adapted to the problem. As previously mentioned, for each interlayer connection a weight is associated. When
assuming the first layer has a size of m, excluding the bias and the respective next layer has a size of n, also excluding
the bias, the total weights needed for the connection between the layers are given by

(m+ 1) · n. (2.2)

In the learning process of a NN the initially random weights are adjusted with the help of the back propagation algorithm
in an iterative process to minimize a loss function [21].
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(a) i-th neuron in a Neural Network: The input of a neuron is
either the data or the output of the previous layer. Inside the
neuron the input is multiplied by a weight and summed up.
The sum is fed into an activation function σ whose output is
the output of the neuron.

(b) Example of a Neural Network: It consists of three inputs
(square boxes) and the bias term. Between the output layer
and the input layer a hidden layer with two neurons and one
bias term is placed.

Figure 2.3.: In the left Figure the most basic element of a Neural Network is shown. Multiple neurons, which are con-
nected as shown in the right Figure, form a layer.

2.2.1 Loss Function

Fundamentally a loss function is a metric to measure the loss between the prediction of the neural network and the real
value.
Depending on the nature of the problem, which should be solved by a NN, different loss functions can be optimized.
An exemplary loss function that will be used later for a regression problem, is the Mean Squared Error (MSE). Formally
defined, there are N samples to test on and for the n-th sample y (n) is the actual value while ŷ (n) is the prediction by the
NN, the MSE is

1
N

N
∑

n=0

�

y (n) − ŷ (n)
�2

. (2.3)

When taking the root of this error, the resulting loss is the Root Mean Squared Error (RMSE). In comparison to MSE the
RMSE is a better indicator for the actual problem because it is not squared.
If a classification problem is solved, the data is not a continuous output like in the previous regression case. One possible
way is to encode the classes in a zero vector with a size of the total classes K . For the k-th true class the k-th entry of the
vector is set to one. Generating this vector is called one-hot encoding. Hence, the resulting vector is an one-hot vector.
The last layer of the NN consists of K output neurons and tries to reproduce this vector. If the output of the NN is scaled
to sum up to one, the output can been seen as probabilities for the different classes. It follows that for classification a loss
function which measures the distance between two different probability distribution is desired. The Cross Entropy (CE)
which is defined by

−
N
∑

n=0

K
∑

k=0

y (n)k log ŷ (n)k (2.4)

stands as an example for a such loss function.

2.2.2 Learning Process

As previously stated, the learning of a NN is optimizing the loss function with respect to the weights. Because the loss
function might have multiple local minima, the optimization problem to solve is non-convex. For this reason, there is
currently no closed form solution for an arbitrary NN. To overcome this problem iterative methods are used.
In general, the process of training can be split into two parts, the forward pass and the backward pass. In the forward
pass an example is fed into the NN and passed to the end. Here the error is calculated with the help of the loss function.
Based on this error, the weights for the last layer are updated. In order to update the remaining weights, the error is
propagated backwards from layer to layer, where all weights are updated [21].
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For updating the weights a simple gradient descent

wt+1 = wt −α∆wt (2.5)

could be used. In Equation 2.5 wt denotes the current weight, ∆wt the gradient of it and α the learning rate. A more
sophisticated update rule was introduced by [22]. Their algorithm Adam proved to be good. For such an algorithm
multiple techniques extend the simple update step.

2.2.3 Activiation Function

One important property to remember for NNs is that, if the activation function is non-linear, it is possible to represent
every non-linear continuous function, as long as there is an infinite amount of neurons in the hidden layer.
As an activation function σ various possibilities has been developed and tested. In Figure 2.4 two of the most popular
choices for an activation function are shown [23].

(a) Logistic function – a sigmoid function (b) Rectified Linear Unit

Figure 2.4.: Two popular Neural Network activation functions

Sigmoid
The first activation function – sigmoid functions – is a group of functions which form an "S". Two of the most popular
functions of this group are the logistic function

σ(x) =
1

1+ exp(−x)
.

or the tanh function

σ(x) = tanh(x).

As an example of a sigmoid function the logistic function is shown in Figure 2.4a. From now on, when a sigmoid function
is used, the logistic function will be the underlying function.

Rectified Linear Unit
Another popular activation function is the Rectified Linear Unit (ReLU), which basically consists of a max operator

σ(x) =max(0, x).

Compared to the sigmoid functions, ReLUs have a hardcut off at x = 0. [23] showed that, because of this property,
training with ReLUs is several times faster in comparison to a sigmoid function. In Figure 2.4b a plot of such a ReLU
is shown. However this hard cutoff comes with its drawbacks. As a matter of fact, it is not possible to compute a
meaningful derivative for x ≤ 0. As a result, the gradient is zero and the weight will not update according to Equation
2.5. To overcome this problem the concept of leaky ReLUs was introduced by [24], where the output is not zero but
rather αx for x ≤ 0, resulting in a gradient of α for x ≤ 0.
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2.2.4 Dropout Layers

A dropout layer randomly "drops" (setting to zero) the output of a given neuron with a probability p. The affected neuron
is essentially ignored during the forward and backward pass for one sample. As a result, the NN learns not to be solely
dependent on a single neuron as it might be dropped. According to [23] this behavior increases the generalization ability
of the neural network because every combination of dropped neurons can be seen as a new NN. In the final network all
networks are combined which can be interpreted as a form of boosting [25].

2.2.5 Convolution Layers

The last concept that is used in the final model is a convolution layer. [26] were one of the first to propose this concept
of this layer. With the help of convolution layers patterns can be detected regardless of their positions in the input.
As the name suggests, the same convolution kernel with size c×c is slid over the whole multidimensional input. Typically,
the follow-up step is a pooling layer in which the maximum of a small area z × z is obtained every step s on the input.
When z = s, a non-overlapping pooling is performed, if s < z the pooling is overlapping [23].
Because the convolution kernel slides over the whole multidimensional input, it has less weights than in a fully connected
layer (Equation 2.2). The total amount of weights are calculated by

(b · ce + 1) · d (2.6)

where b is the depth of the input (e.g. RGB image: three), d the amount of convolutions applied on the multidimensional
input and e the amount of sliding directions on the input (e.g. RGB image: two) as well as the obligatory bias term – 1.

2.3 Gaussian Processes

Besides NN another type of model is used – the Gaussian Process (GP) model or just GPs, which is applied on a regression
problem, here GPs are mapping a continuous input x to a continuous output y defined by a function y = f (x ).
Assuming a simple problem like

t(y) = y + ε (2.7)

y = f (x )

ε ∼ N
�

0, β−1
�

, (2.8)

where β is the precision of the unknown noise applied by the Gauss distribution N , a simple data set consists of N pairs
of x ∈ RD and t ∈ R1. When stacking all x in

X =











...
...

x 1 . . . x N

...
...











∈ RD×N

as well as all t in the same way, the data set is formulated as one matrix and one vector.
Equation 2.7 can now be reformulated as a probability

p(t |y) =N
�

t | y , β−1IN

�

.

By integrating over y the marginal distribution

p(t ) =

∫

p(t |y)p(y)dy

is built. By the definition of a GP, the probability p(y) is expressed by

p(y) =N (y | 0, K) ,

a Gaussian distribution N whose mean is zero and covariance a Gram Matrix K [21]. This matrix consists of every
possible inner product between two data points in the feature space < x i , x j > from all data points X . Such an inner
product is expressed by a kernel function k(x i , x j), hence, Ki, j = k(x i , x j).
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Now, with the help of Equation A.3 the probability for p(t ) is given by

p(t ) =N (t | 0, C)

with C = β−1IN + K .

Because the final goal is to make a prediction tN+1 for a new data point x N+1, it is necessary to represent the probability
distribution

p(tN+1 | t ).

As a first step the joint distribution

p(t N+1) =N (t N+1 | 0, C N+1) (2.9)

is formed, where t is extended with tN+1 to t N+1. In a same manner the covariance matrix C is extended by

C N+1 =





C k

kT c



 . (2.10)

In Equation 2.10 k is a vector, where each entry is the scalar product, thus, the kernel function between the new data
point and every existing, formally: kn = k(x n, x N+1) ∀n ∈ 1, . . . , N . Again, in a same way the scalar c is expressed
by c = k(x N+1, x N+1) + β−1. Now the previously constructed joint distribution (Equation 2.9) can be split according to
Equation A.4 and A.5 in the predictive probability distribution N

�

µpred, σpred

�

with parameters [21]:

µpred = kTC−1t (2.11)

σpred = c − kTC−1k. (2.12)

In comparison to NN (Section 2.2) there is no iterative method needed, the computational process of learning consists of
inverting C .
The previously used kernel function k(x i , x j) represents a scalar product between two data points in the feature space
< x i , x j >. Because the kernel function expresses the similarity between these two data points, it must be symmetric.
The easiest way to construct new kernels is to combine other valid kernels. In [21] multiple operations for constructing
new kernels are shown. Despite that, two different kernels are presented in the following.
The scalable Gaussian kernel

k(x i , x j) = θ0 exp

�

−
1

2θ 2
1

‖ x i − x j ‖2

�

is a simple but yet effective kernel. It only has two hyper parameters θ . θ0 is the scaling of the kernel and θ1 controls
the bandwidth. It is even possible to drop the first hyper parameter θ0.
Another possible kernel choice could be the scalable Gaussian linear constant offset kernel. As the name suggests, it
is assembled from multiple smaller kernels. The complete kernel

k(x i , x j) = θ0 exp

�

−1
2θ 2

1

‖ x i − x j ‖2

�

+ θ2x T
i x j + θ3

has two more hyper parameters in comparison to the scalable Gaussian kernel. The additional parameters regulate the
linear term (θ2) as well as the constant offset (θ3).
One way to optimize such hyper parameters is by sampling in each hyper parameter space and evaluating the error by
Cross Validation (CV). In the end the hyper parameters with the lowest error should be selected. Beside the fact that this
method is easy, it is not a very efficient optimization. A more sophisticated approach would use an iterative method like
the gradient update described in Section 2.2.2 to move through the hyper parameter space.

Cross Validation
In CV the data set, here X as well as y , is randomly split into k equally sized folds. Now, the model is trained k times on
k − 1 folds as training set and 1 fold as test set. After training the mean of the error is taken and serves as the overall
error for the tested model. With CV it is possible to evaluate different models in a more general form in comparison to a
fixed training and test set.
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3 Problem Definition
Before a prediction based on a photo or an image Im can be done, the problem is, as already hinted, split into two smaller
subtasks. First the derivation for this split is explained, followed by further describing the derived models.
As mentioned in Section 2.1.4, the force applied on an object is proportional to the sum of all measured static pressures
PDC =

∑

i PDC
(i). Formally

Fn = αPDC

where α is a fixed scalar for all objects. Furthermore, when now assuming the CFM as the friction model, the normal
force onto the object can be split into

Ft = µ · Fn = µ ·αPDC

where Ft is the tangential force. Since the thesis aims to increase the ground truth value for lifting an object, the only
external applied force or moment appears due to the gravity. This force is expressed by the weight force

Fg = m · g

where m is the mass of the object. To compensate this applied force it is necessary that

Fg = Ft , (3.1)

hence,

m · g = µ ·αPDC. (3.2)

In this equation two unknown variables remain – the mass of the object m and the friction coefficient µ between the
object and the finger’s skin.
Assuming the mass m is given for every object, the problem can be simplified even more. Only the friction coefficient µ
is left and m as well as PDC is known for each object.
By separating µ from the other two variables – m and PDC – a ratio

PDC

m
=

g
µ ·α

= Friction Coefficient Scalar (3.3)

between those two is given. From now on this ratio is referenced as the Friction Coefficient Scalar (FCS) for one object.
By relaxing the previously made assumption of m known, one has to predict the two variables m and FCS from an image
Im to successful calculate the Pdc for an object by multiplying them. For this reason, the prediction is split into two
models, one for each variable.
The first model

M1(Pa) = ˆFCS (3.4)

estimates the ˆFCS for one object. The input for this model is a small patch Pa (e.g. 64× 64 pixels big) from the surface
of the object, extracted from the given image Im.
In addition to that, the second model

M2(Im) = m̂

takes the whole image Im as an input and predicts the mass m̂ of the object.
The separately made predictions can be multiplied to retrieve the final pressure value

P̂DC = ˆFCS · m̂.

Before each separate model is explained in more detail, a brief explanation of predicting the sum as well as the patch
extraction is elucidated.
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3.0.1 Predicting the Sum

In the very beginning the assumption was made to predict the sum over all fingers PDC =
∑

i PDC
(i) and not a separate

value for each finger. This approach allows a better generalization for different hand configurations. When, for instance,
two fingers were used (Figure 3.1a) for surveying, let the friction coefficient be µ = 0.4, and both fingers (i = {1, 2})
press with a force of

F (i)n = 5N

on the object, then resulting tangential force per finger is

F (i)t ≤ 0.4 · 5N= 4N

according to the CFM (Equation 2.1). When the weight force due to gravity is the only external applied force, the
resulting force Fg pulling down the object is Fg = g ·m. If the object should not slip, the friction constraint (Equation
2.1)

Fg ≤ F (1)t + F (2)t = 2N (3.5)

must be satisfied.
In another occasion, it is possible to use an additional finger on one side of the object (Figure 3.1b). To prove the made
assumption that at this point it is sufficient to know the sum to prevent the object from slipping, it is important to balance
the forces equally on both sides, preventing any movements v . Therefore, the single finger 1 must press with the same
force like the opposite fingers 2 and 3 in sum

F̂ (1)n = F̂ (2)n + F̂ (3)n . (3.6)

Additionally, it must be taken care of that the resulting moments are also facing opposite directions avoiding a rotation
ω. When now the known sum of the previous survey

F (1)n + F (2)n = 10N

is used to fulfill the constraint Equation 3.6, one possible distribution of the force might be

F̂ (1)n = 5N, F̂ (2)n = F̂ (3)n = 2.5N

With the help of Equation 2.1 it is possible to calculate all tangential forces:

F̂ (1)t = 0.4 · 5N= 2N, F̂ (2)t = F̂ (3)t = 0.4 · 2.5N= 1N.

To prevent the object again from slipping, the friction constraint

Fg ≤ F̂ (1)t + F̂ (2)t + F̂ (3)t = 2N (3.7)

must be fulfilled. As clearly seen Equation 3.5 and Equation 3.7 are equal, hence, it is shown that predicting the
sum instead of every single finger value should be sufficient if the force distribution is equal on both sides along each
dimension (Equation 3.6). A visualization of the problem setup is shown in Figure 3.1.

(a) In a two finger grasp forces on both sides are equally dis-
tributed, canceling out each other on the horizontal axis.

(b) Similar to the two finger grasp the forces on the horizontal
axis cancel each other out in a three finger grasp.

Figure 3.1.: In order to prevent the object from slipping, the total sum of all F (i)t or F̂ (i)t must be greater than Fg . For both
grasp configurations this constraint is fulfilled.
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3.0.2 Patch Extraction

If an image segmentation mask is given, the extraction of a patch Pa is done straight forward. Such an image segmentation
mask indicates if the corresponding pixel belongs to the object or not. The respective entry in the mask is either 0 or 1.
In each iteration n a random position (x , y) is chosen in the whole mask where the coordinates indicate the upper left
corner of the possible patch Pa. With the given image segmentation mask the covered percentage for this patch CPa is
calculated by simply summing over all entries in the patch Pa.
If the patch Pa covers more than a specific threshold CPa > Cthres, the patch is valid and can be used either for training
or testing. The threshold is based on the past iterations n, thus, enabling to extract patches even from small objects with
little coverage.

Cthres = 0.9exp(−0.001 · n)

If the mask is not given for an image (e.g. an unprocessed picture), the patch extraction becomes more complicated. At
this point, there are multiple possibilities, including either a construction of the image segmentation mask or a sample
area must be explicitly given by the operator.

3.1 Model M1

Like previously in Equation 3.4 defined, the model M1 takes a small patch Pa as an input and estimates the FCS for this
patch.
Because the patch is extracted from an image Im, it consists of further dimensions for representing each color in the
RGB-room besides its width and height. So for an 32× 32 patch the total amount of pixels are 32 · 32 · 3= 3072.
For this high-dimensional inputs NN (Section 2.2) especially Convolution Neural Networks (CNNs) were proven to be
good. A CNN combines convolution layers with normal, fully connected, layers.
First the input patch is given into multiple convolution layers, which should be capable of detecting the shading on the
surface of the object due to light. As previously explained in Section 2.2.5 each convolution layer is followed by a pooling
layer, which reduces the size and ensures only the important information is given to the next layer.
After two convolution layers and their respective pooling operations, all resulting smaller patches are flattened and
concatenated generating a single long vector. This vector is then used as an input for a fully connected NN. At this point
in the NN an additional layer is inserted between the input and the output. As we want to predict the FCS, the output is
a single neuron without an activation function σ. This complete network with regression output is, like in Section 2.2.2
explained, trained with the MSE as loss function.

3.2 Probabilistic Model M1

The probabilistic equivalence for model M1 also takes a patch Pa as input, but does not produce a single output for the
FCS rather a probability distribution over the FCS dimension. To generate the one-hot vector (see Section 2.2.1) the FCS
dimension is split along its axis into a fixed amount of bins B with equal size.
Now, the output of the network is a probability for each possible bin corresponding to a specific FCS instead of a single
FCS output. When all outputs are normalized to sum up to one, it can be interpreted as a probability for each bin with
their associated FCS.
With such knowledge the controller could first pick up the object assuming the FCS with the highest possibility. On the
one hand, if a slip is occurring in this state, it could directly switch to the FCS with the second highest probability and so
on. Currently each controller ([4], [5]) starts with a fixed value and must increase the pressure subsequently until the
slip no longer occurs.
On the other hand, the controller could also decrease the desired pressure, when he detects no significant increase in the
actual measured pressure while he tries to reach the desired pressure. This phenomena happens when the object gets
deformed.

3.3 Model M2

The second model M2 predicts, based on an image Im, the possible mass of the object. This proposed approach also uses
the image segmentation mask of the given image Im, hence, the previously provided possibilities (Section 3.0.2) remain,
when no such image segmentation mask can be provided.
The underlying method used for this regression model are GPs (Section 2.3).
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In order to generate a data point from its given image segmentation mask three features are extracted in a preprocessing
step:

• Area a

• Height h

• Width w

The area a is calculated by counting the total area covered by the image segmentation mask, while the height h and
width w are determined by measuring the distance in their respective direction between the first and last occurrence of
the object in the image segmentation mask.
With these features for every image Im a quadratic feature vector

x T =
�

a h w a2 h2 w2 a · h a ·w h ·w
�

is constructed. This extraction assumes that the image segmentation masks were all generated from images, where the
camera had the same distance to all objects. As a result, rescaling between different image segmentation masks is not
needed.
The model learning and prediction follows the explained scheme in Section 2.3. Especially a set of possible hyper
parameters are evaluated by using CV.
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4 Experiments
To generate the data set, the provided high resolution pictures of the objects were used, besides measuring the needed
force to hold the object tight without slipping.
After surveying all objects the previously proposed models were implemented, trained and evaluated using Python.1

4.1 Objects

The objects are taken from the Yale–CMU–Berkeley Object Set (YCB Object set), which aims to establish a benchmark in
grasping real-life objects [27]. There are a total of 104 objects in the set, but only a subset consisting of 24 objects was
selected for the experiments in this thesis. All used objects and three of their important properties (mass, PDC and FCS)
are shown in Table A.1.
For each object

⊕ 600 high resolution RGB images,

	 600 RGB-D(epth) images,

⊕ 600 image segmentation masks (one per each image),

	 600 calibration parameters (one set per image),

	 five sets of textured three-dimensional geometric models,

⊕ and the mass

is provided [28]. Data marked with ⊕ is used for training the models and predicting the final PDC from photos. In Figure
4.1 an example image (Figure 4.1a) and the respective image segmentation mask (Figure 4.1b) is shown.

(a) Exemplary image from the object data set (b) Exemplary image segmentation mask from the object data
set

Figure 4.1.: An example image of an object with it respective image segmentation mask

The objects are photographed in five different angles ranging between 0◦ (full front view) and 90◦ (full top view). The
rotating platform, which can be seen in Figure 4.1a is stopped after every 3◦ turn in a full 360◦ rotation, hence, in total
5 · 120= 600 images per object are taken.

4.2 Robotic Setup

The previously described tactile sensors (Section 2.1.4) are mounted on a four finger robotics hand (Figure 4.2). The
used robotics hand is the Allegro model by Wonik Robotics.2

1 Python Website: https://www.python.org/
2 Wonik Allegro Website: http://www.simlab.co.kr/Allegro-Hand.htm
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Figure 4.2.: The Allegro hand on which the tactile sensors are mounted. The hand itself is located ≈ 30 cm above the
table.

Each finger has four independent controllable joints, thus, there are 16 joints in total. As the hand was already used in
previous experiments, it was possible to reuse the joint controller as well as the task space controller for each finger.
The hand is mounted on a wooden structure ≈ 30 cm above the table to allow plenty room for slipping.
The whole setup, including the hand control and reading values of the tactile sensors, is integrated in a Robot Operating
System (ROS) environment.3 Briefly explained, as one of the core features in a ROS environment, multiple programs
can communicate with each other in an asynchronous way by either topics or services. So the hand itself is controlled
by various ROS topics while simultaneously the current tactile sensor values are published in their respective ROS topic
independently of the controller.

4.3 Object Survey

The object survey is split into two main parts. First the object is hold by the hand, during this phase the actual measuring
of the PDC for this particular object is done. After multiple measurements one single PDC value needs to be extracted from
all of them in the second step.

4.3.1 Surveying the Objects

The rough process for surveying one object is shown in Algorithm 1.
Briefly explained, while the operator still holds the object, the hand is closed until the input PDC value for every finger is
reached. The operator releases the object and the current PDC value is recorded for two seconds. In the end the recorded
data is saved with a flag whether the object has slipped or not.
Such a survey was completed for every object between five (Figure 4.3a) to twenty (Figure 4.3b) times. In Figure 4.3
two exemplary measurements are plotted over their respective time span.
During the surveying of the objects multiple problems may occur, which either are just temporary or totally disqualifying
the object from being added to the data set.
A short description of the four major problem groups is given, for a better visualization the problems are shown in Figure
A.1.

1. Fingertip sensing
If the normal of the surface is not correctly estimated, the finger does not move directly along the real normal
onto the object, when applying the desired input PDC. Such errors could result in a configuration (Figure A.1a),
where the most front part of the finger touches the object. Figure 2.2a shows that, when the most front part of the
finger is deformed, there is not enough fluid which gets compressed. As a result, one is not able to measure the
PDC sufficiently.

3 ROS Website: http://www.ros.org/about-ros/
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Input: P̂DC – desired value
Input: total_fingers – used fingers
Output: for each sensor – PDC over time
// Operators holds object

open hand
move finger in contact
reached_fingers= 0
while reached_fingers< total_ f ingers do

foreach f in total_fingers do
if finger_values[f]> P̂DC + tolerance then

move away from object in surface normal direction

else if finger_values[f]< P̂DC − tolerance then
move to object in surface normal direction

else
++ reached_fingers // one time increase per finger

// Operator releases objects

// Start survey

start_time= current_time()
while current_time()− starttime< 2s do

foreach f in total_fingers do
save(f, finger_values[f])

Input: Success – bool provided by operator
save( f , Success)

Algorithm 1: Object survey

2. Too big
Another similar problem occurs with too big objects, such objects may not fit in the hand (Figure A.1b). Thus, the
object might touch other parts of the hand instead of the finger tips, what once again results in a wrong measure
of the PDC.

3. Too heavy
Other objects may just be even too heavy (Figure A.1c). Due to the fine electronics inside the finger tip, no
arbitrarily high force can be applied onto the object. But for heavy objects it might be necessary to apply such high
force, hence, some objects can not be surveyed at all.

4. Odd shape
The last problem also disqualifies the object from being added to the data set. In this case, the object is not too
heavy, but rather has an odd shape (Figure A.1d). Therefore, the assumption that the force is always normal onto
the object (Section 2.1.2) is violated.

4.3.2 Extracting the Desired PDC Value

As in Section 3.0.1 described, the total sum of all measured PDC values across the fingers is used instead of every single
finger.
When looking at the plot of the sum of all measurements in Figure 4.3, it is clear that some form of processing needs to
be done. In the end, the goal is to predict a single PDC value as the ground truth for the slip controller from photos and
not a continuous value over time.
The processing of the PDC values is split into two steps. In the first step a single measurement is reduced to its respective
mean. After that, all successful and unsuccessful measurements are convoluted to a single PDC value. For extracting such
a single PDC value a few different methods are proposed:

1. Min success
This is the most straight-forward method, the minimal PDC value of all successful measurements is used.

2. Mean of success
By being almost as simple as the first method, the mean of all successful trials is taken. But one need to keep in
mind that the mean is always biased to where the most measurement points are surveyed.
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(a) 5 measurements of the PDC for the object "Spatula" (b) 20 measurements of the PDC for the object "Chips can"

Figure 4.3.: Comparison between few measurements and more

3. Min success after highest fail
This method is similar to the first one. As instead of just taking the minimal successful value, the minimal successful
value after the highest unsuccessful value is selected.

4. Mean of success shifted towards mean of unsuccessful till overlap
The last method is a little bit more sophisticated by combining the second and the third method. Once again the
mean of the successful trials is taken as well as of the unsuccessful ones and additionally their respective variance.
Based on these two Gaussian distributions, the mean of the successful trials is shifted towards the mean of the
unsuccessful ones. The goal is reached when the total overlapping area has reached a user defined minimum. At
this stage the shifted mean of the successful trials serves as the final PDC.

Because data was limited for some objects (5 trials – Figure 4.3a), the third method was selected for this thesis.

4.3.3 Final Data Distribution

With the now extracted PDC value and the respective mass per object the FCS for each object can be determined with
the help of Equation 3.3. The distribution of the objects is shown in Figure 4.4a. In this Figure both variables to predict
– mass and FCS – are plotted. Each blue dot represents an object with its respective mass and FCS. As it can be seen
in the plot, the objects are not equally distributed across both dimensions. As seen on the vertical axis, most of the
objects weigh between 0 g and 100 g, while the FCS values could be assumed to be Gauss distributed. In Figure 4.4b this
Gaussian distribution of all FCS is abstracted visibly. The histogram was generated with a bin width of 1 and centers at
every full step 1, . . . , 9. From the histogram the mean of all FCS can be determined to ≈ 3.
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(a) The final distribution of the mass as well as the FCS for each
object (blue dots): The objects are not evenly spread across
the whole dimension. Most of the objects weigh from 0 g to
100 g and have a FCS between 2 m/s2 and 4 m/s2.

(b) By sorting the objects in bins with width 1 and centers at
every full step 1, . . . , 9 the following histogram results. As it
already could be guessed from the distribution in the left Fig-
ure 4.4a, most of the objects reside in the bins 2, 3 and 4.

Figure 4.4.: Scatter plot to show the two predictive dimensions as well as the histogram for the FCS

4.4 Model Learning

Both models were implemented in Python.4 As previously (Section 4.2) described, the communication with the hand is
done in a ROS environment using the ROS Python Application Programming Interface (API). For learning the NNs the
framework Keras5 was used, which acts as a high level API for either Theano6 or Tensorflow7, both are opensource NN
libraries.
In order to train M1 as well as its probabilistic equivalent, small patches Pa are needed. The extraction of such patches
is done like in Section 3.0.2 described. Per object and per image are in total 11 patches extracted, but only from the
subset of images which directly point to the object. This subset consists of the both lower camera angles, hence, a total
of 2 · 120= 240 images. Resulting in a total of

2 · 120 · 11= 2640

patches per object, thus, in a data set with

2640 · 24= 63360

patches of a size of either 32× 32 or 64× 64.

4.4.1 Model M1

Based on the previous explained concepts of NNs, it is possible to refine the rough structure for M1 introduced in Section
3.1. Different variations of the already proposed network were tested. Statistics for all different models can be found in
Table 4.1. As an example the baseline model is shown in Figure A.2a with its two main components, first the convolution
layers, followed by a fully connected NN with two hidden layers.
The first step – two convolution layers (Section 2.2.5) – reduces the thousands of pixel of the input patch Pa to a
reasonable number. In the first layer eight bigger convolution kernels of size 5×5 are used, followed by a pooling of size
and step width two. When assuming an input patch of size 32× 32, the convolution kernel stops before it overlaps the
border of the patch resulting in a reduction of two pixels on each side of the image. With the help of Equation 2.2 the
total weights for this layer are

�

3 · 52 + 1
�

· 8= 608.

4 Python Website: https://www.python.org/
5 Keras Website: https://keras.io/
6 Theano Website: http://deeplearning.net/software/theano/
7 Tensorflow Website: https://www.tensorflow.org/

18

https://www.python.org/
https://keras.io/
http://deeplearning.net/software/theano/
https://www.tensorflow.org/


Table 4.1.: All tested network configurations for model M1

Name
Patch size 32× 32 64× 64

Structure Weights Conv. MSE Weights Conv. MSE

Baseline
A.2a

6,085 A.4a 1.876 26,565 A.4b 1.830

2. Baseline + Added ReLU to last layer 6,085 A.4c 1.868 26,565 A.4d 1.830

3. 2. + Double convolutions per layer 12,169 A.4e 1.872 53,129 A.4f 11.275

4. 2. + Add a third layer + increase first
layer size

12,805 A.4g 2.141 53,765 A.4h 1.908

5. 2. + Sigmoid instead of ReLU in NN 6,085 A.4i 1.851 26,565 A.4j 1.829

6. 5. + Overlapping pooling + increase first
layer size

8.421 A.4i 1.868 45,285 A.4l 1.817

With a pooling step of width two the convoluted patch of size 28 × 28 gets reduced to 28/2 = 14 in each dimension.
Because there are eight convolutions in this layer, the new "patch" has a new depth of size eight. In the next convolution
layer the size of the convolution kernel is reduced to 3×3 and only four kernels with this size are applied. Once again the
total weights are given by Equation 2.6:

�

8 · 32 + 1
�

· 4 = 292. Here also a pooling takes place to reduce the dimensions
of the patch even more, resulting in a total size of 6× 6× 4. But before moving to the next step, the patch is flatted into
an one-dimensional vector with size 6 · 6 · 4= 144.
This output is used in the second step – two fully connected layers – to solve a regression problem. The first hidden layer
has a size of 32. With Equation 2.2 given, the amount weights for the first hidden layer is (144 + 1) · 32 = 4640. For
this layer the dropout mechanism (Section 2.2.4) has been used. The following hidden layer has a size of 16 resulting in
(32+ 1) · 16= 528 weights according to Equation 2.2. Because a regression output is wanted the last layer only has one
neuron, hence, the amount of weights for the last connection is given by (16+ 1) · 1= 17.
The resulting sum of all weights is

608+ 292+ 4640+ 528+ 17= 6085.

In this baseline model all activation functions σ are ReLUs.
Before the training of the model can begin, the data set is split into two parts, the test set and the training set. With 24
objects in total, 20 objects were randomly assigned to the training set and the four remaining objects form the test set.
This separation is kept from now on equal for all models. After the split the models were trained with the MSE (Equation
2.3) as their loss function for 100 epochs, in each epoch every trainings patch is used exactly once. After each epoch the
current model is evaluated on the test set. If the current model is better than the previous best model, the current model
is saved as the new current best model. The progression over time for each model is illustrated in Figure A.4. After the
100 epochs of training the best model is tested on the whole data set and the loss collected in Table 4.1.
In the evolution of the training and test error (Figure A.4) it can be seen that the error on the test does not further
decrease but rather the network oscillates between two possible minima. To prove this assumption the 2. network
structure with a patch size of 32× 32 was trained for 1000 epochs. The resulting evolution is shown in Figure 4.5. In
this plot the oscillations can be identified to start after the 100 epochs, therefore, a 100 epochs were chosen for training
all models.

4.4.2 Probabilistic Model M1

As in Section 3.2 outlined, the distribution over all FCS needs to be discretized in multiple bins. As previously shown in
Figure 4.4b the data resides naturally in some bins especially at the positions 2,3 and 4. This histogram serves as the
baseline for constructing the one-hot vector. Based on it the distribution is divided in B equally sized bins with a size of
1 with centers at 1, 2, . . . 9. As in Section 2.2.2 explained in order to handle a class output instead of the MSE as a loss
function the model is trained and evaluated using CE (Equation 2.4). In addition to CE, a more interpretable metric, the
top k accuracy metric is now introduced. This metric checks if the actual class is among the k highest predicted classes,
if so, the test is counted as successful. For multiple training examples the metric calculates the percentage of successful
tests from all tests. Besides the CE all models were also evaluated using this metric with k = 3 as its parameter. Even the
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model selection for the probabilistic M1 is not based on CE as its loss function, but rather on the top 3 accuracy. A special
case holds for k = 1, where it is the normal accuracy.
The network structure and changes (Table 4.2) are similar to Model M1 in Section 4.4.1. As for the non-probabilistic
model the bigger patches of size 64× 64 do not show any significant benefits and take more time to train the model, the
probabilistic model M1 is only trained on the smaller patches of size 32× 32.

Figure 4.5.: 1000 epochs of training for model M1 with a
patch size of 32×32 to show the oscillation be-
tween two minima

Table 4.2.: All tested network configurations for the proba-
bilistic model M1

Name
Patch size 32× 32

Structure Weights Top 3 acc.

Baseline
A.2b

6,305 0.8275

2. Baseline + In-
creased size of
first hidden layer

11,521 0.8279

3. Baseline + Dou-
ble convolutions
per layer

12,389 0.8284

4. 2. + Add a third
layer

13,025 0.8274

5. Baseline + Sig-
moid instead of
ReLU in NN

6,305 0.8280

6. 3. + Overlap-
ping pooling +
increase first
layer size

9,573 0.8285

4.4.3 Model M2

As in 3.3 proposed, for the second model M2 GPs with different kernels were tested. In addition to that a comparison
was made to Bayesian linear regression.8

Because training on the whole data set of images 24 · 120 = 2880 is too expensive computation-wise, it was tested if
training on less data actually would impair the result. For testing this hypotheses the models were learned on 1%, 5%
and 10% of the data set.
Having already explained, the hyper parameters were optimized by sampling each parameter and combining them in
every possible combination. Such a combination of hyper parameters is tested using 6 fold CV. For example, when there
are two hyper parameters, each sampled ten times, 102 ·6= 600 models are learned and evaluated. One important thing
to notice is that the precision β of the underlying noise distribution (Equation 2.8) is not known, hence, it will account
into the hyper parameters as well.
Before the models can be tested, it is important to standardize the data. Naturally the area covered a of an image
segmentation mask is equal to the height h or width w squared, ergo, multiple times bigger. Standardizing the data leads
to a more robust result in the end. Before the model is learned every data point of the training set, consisting of x and t,
is modified by the mean x̄ (i) of the training set as well as standard deviation s(i) along each dimension x (i) including the
target t:

x̃ (i) =
x (i) − x̄ (i)

s(i)
, t̃(i) =

t − t̄
s(t)

.

The resulting standardized data set is then used to train multiple models and evaluating them.

8 For information about Bayesian linear regression please see [21]
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A new data point is standardized with the mean x̄ (i) and variance s(i) of the training set. After a prediction t̂ is made, the
target value t is recovered with the help of the target mean of the training set t̄ as well as the standard deviation s(t)

t = t̂ · s(t) + t̄.

An overview over all tested models is shown in Table 4.3. Because the mass is again an regression output, the MSE is used
to select the best model, and the RMSE is presented for a more interpretable result. Because the MSE is still squared, the
error can not be compared to the absolute value, while with the RMSE it is possible.
Unfortunately, the scalable Gaussian linear constant offset kernel could not further be explored due to the sheer amount
of hyper parameters needed to be sampled.

Table 4.3.: All tested kernels for Gaussian Processes

Method/Kernel Tested hyper parameters Percentage used [%] Best RMSE

Bayesian linear regression

10 1 122.89

10 5 132.35

10 10 132.40

GPs with Gauss kernel

100 1 131.03

100 5 129.45

100 10 131.20

GPs with linear kernel,
no offset

1600 1 201.77

400 5 193.76

400 10 190.38

GPs with scalable Gauss kernel

1000 1 130.97

343 5 129.38

125 10 131.20

GPs with scalable Gaussian
linear constant offset kernel

3125 1 96.079

1024 5 140.157

– 10 –
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5 Discussion
Two major assumptions were made. On the one side it was assumed that the perfect image segmentation mask is given
and on the other side that the mass is known.
The assumption that the perfect image segmentation mask is given is not the regular case when grasping an object in
a clustered environment. In such a scenario the object might be only partly visible due to other objects covering it. As
a result, for extracting the patch and determining the area a, height h and width w of the object more sophisticated
approaches are needed.
When the assumption is kept that the mass is known, the prediction solely relies on M1 or the probabilistic equivalent.
As the PDC prediction is only depending on one model, the final prediction is less error-prone.
Nonetheless, to answer the question whether it is possible to predict grasp forces or not, it is, but currently not on point
with the proposed methods. In the following it is shown and in depth discussed, where still problems remain to be solved.

5.1 Predicting the Friction Coefficient Scalar

First the prediction of the continuous output is discussed, second the prediction of the probabilistic equivalent is evalu-
ated.

5.1.1 Model M1

As marked in Table 4.1, the best MSE is 1.851 (32× 32 patches) or 1.817 (64× 64 patches). When taking the root of
both MSE, the resulting RMSE for the FCS is ≈ 1.35. As seen in Figure 4.4a, the absolute values goes up to 7.2, resulting
in a relative mean error of 1.35/7.2 ≈ 18.75%. Given such a value, there is clearly room for improvement (see Chapter
6).
Nonetheless, the slight changes in the structure of the NN did not have any significant impact on the MSE. In Figure A.4
the loss evolution for all different models is even similar, as the evolution of the training as well as the test loss follows
the same pattern throughout every model. Additionally as already mentioned in Section 4.4.1, the training of the model
is periodic, resulting in no further decrease of the loss with increasing amount epochs learned.
Despite that, in Table 4.1 is shown that the usage of the bigger patch size slightly increases the performance of the
network, even though the additional weights. But with such a bigger patch size from 32× 32 to 64× 64 the overhead of
extracting and storing increases exponentially with two as exponent. The increasing amount of weights needed for the
same structure also has its downsides. As to keep the amount weights as little as possible, less complex structures are
possible for 64×64 patches instead of size 32×32. As seen in Table 4.1, when the amount of weights trained is near the
used training patches (63360), the MSE increases moderately (4. model) or even drastically (3. model).
Nonetheless, in Figure A.4l the loss for the best model is plotted over the total epochs trained. For this model the
overlapping pooling technique (Section 2.2.5) was used for the convolution layers. For each pooling operation the
maximum of a 3 × 3 square is taken every second entry. In addition to the overlapping pooling the first layer in the
fully connected NN used the logistic function as its activation function σ, as well as the size of the first hidden layer was
increased to 64. As in the beginning mentioned, the total RMSE for this model is ≈ 1.35. The model itself is taken from
the 84. epoch, where the minimum of the loss on the test set was achieved.

5.1.2 Probabilistic Model M1

The probabilistic equivalent to model M1 shares some characteristics with to the non-probabilistic model. Interesting
though is the non-decreasing CE of the test set across all trained models after the first or second epoch trained. This is
an indicator for overfitting – the learned model does not generalize well to unseen data. To overcome overfitting before
it even occurs, an additional drop out layer was inserted after the first hidden layer. Another tested technique was to
randomly leave out examples during training. Hence, per epoch not the complete data set was utilized for training but
rather only e.g. 80%, based on the leave out probability. In the long run this technique did not solve the problem of early
overfitting, but rather postponed the effect to the 5th or 6th epoch.
Nonetheless, with or without applied techniques during training the top 3 accuracy on the test set went up, resulting in
a better prediction in the end. Due to a bin width of 1 the mean error which naturally occurs when sorting in the correct
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bin is at max 0.5. When the wrong bin is predicted, the error increases by the bin width every bin apart. For example,
when the actual value is in the adjacent bin to the predicted bin, the maximum error is 1.5. So the non-probabilistic
model (best RMSE: 1.35) would predict in the average one bin off. Based on this connection the top 3 accuracy was
chosen to allow the probabilist model to cover the same area as the non-probabilistic model.
Because the models trained for the probabilistic M1 are similar to the non-probabilistic equivalent, the variations of the
network had as well no significant impact, the model was only slightly improved. One significant thing all models shared,
is the increase of the top 3 accuracy from roughly 0.74 to 0.77. Like in the non-probabilistic model the evolution of the
respective loss function is similar across all trained models.
As the increasing patch size had no significant improvements for the non-probabilistic model, it was decided to test the
probabilistic model only on 32× 32 patches. The best model achieves an overall top 3 accuracy of 0.8285.
[5] showed that their algorithm is feasible to detect a slip within 30 ms before an inertial measurement unit could detect
it, while [4] even stated to detect slip up to 200 ms in the future. Assuming the robotic hand can increase the applied
force within in a reasonable time, the hand should be able to test and apply the top 3 predicted FCS before the objects
fully slip out of the hand. As seen in Table 4.2, the best model trained was 6., predicting the correct class along the top 3
predicted classes with a success rate of 82.85%.

5.2 Predicting the Mass – Model M2

Regarding predicting the mass, the smallest RMSE achieved was ≈ 130 by using the (scalable) Gaussian kernel. As a
result, the following hyper parameters were optimized:

• parameter prior

• kernel bandwidth

• (and scaling factor)

Assuming such a RMSE, it is clear that the mass prediction is not perfect, but there is some form of correlation between
the defined features and the mass. As in the very beginning mentioned, the rather high RMSE is a result of the unknown
density and unknown depth of the possible object. With the help of the depth the total volume can be estimated more
accurately, multiplied by the density a better mass prediction should be made.
When comparing this result to the other kernels tried, it can be seen that the other kernels were good as well, but had
more hyper parameters. Due to the inefficient method of hyper parameter optimization, it is easier to use a more simple
kernel like the non-scalable Gaussian kernel. As explained previously, the sheer amount of hyper parameters for the
scalable Gaussian linear constant offset kernel made it impossible to find the perfect set of hyper parameters for this
kernel.
The assumption that decreasing the size of the data set does not yield worse results, were also proved to be true. Across
all different kernels it was shown that the decrease training set size does not significantly increase the RMSE and even
decreases it for some configuration. As the testing of one hyper parameter configuration on 10% instead of 1% of the
data set takes roughly 100 times longer with 6 fold CV, training on the smaller data set significantly increases the speed
of training. Due to many hyper parameter configurations across all kernels it is useful to identify a range for each hyper
parameter first, in which the best value for this hyper parameter is residing. By identifying the range on 1% of the data
set beforehand and finally only optimizing the hyper parameters within the given range on 10% of the data set, the
inefficient way of selecting the hyper parameters could fasten up a little bit. The medium sized data set of 5% can be
used to refine the rough range.
As this approach of hyper parameter optimization is capped by the amount of samples for each hyper parameter exponen-
tial to the total hyper parameters, a better approach at this point would be, like previously already mentioned, making
use of a gradient-based method (Equation 2.5). For each hyper parameter it is possible to follow the gradients direction
of the steepest descent in its respective dimensions, following this direction reduces the massive amount of unnecessary
sampling of useless hyper parameters. Even so, for such a gradient-based method once again hyper parameters are
needed, like the learning rate. This learning rate could be optimized again. Following down this road, leads to an infinite
learning of the previous hyper parameters. For this reason the used method by first searching a range, which serves as
the baseline, on the smaller data set – 1% – then optimizing for the bigger data set – 10% – within the range, is sufficient
for a small amount of hyper parameters (up to 3).
However, in Figure 5.1 the hyper parameter optimization for the normal Gauss kernel on 10% of the data set is shown. As
seen in Figure 5.1a, the parameter prior was optimized between zero and four. This range was, as previously explained,
determined on only 1% of the data set. The resulting parameter prior on 10% is ≈ 1.833 while on 1% of the data set it is
≈ 0.716. Similar small differences apply for the kernel bandwidth as well. For only two hyper parameters the connection
between those are relatively easy to decouple and can be optimized with plain sampling. With the increasing amount
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(a) RMSE over the parameter prior (b) RMSE over the kernel bandwidth

Figure 5.1.: Evolution of the RMSE over the hyper parameter dimensions: The plots are generated using 10% of the data
set, while beforehand the range in within the hyper parameter are may residing is determined only on 1% of
the data set.

of hyper parameters for the scalable Gaussian linear constant offset kernel it seems nearly impossible to determine the
range in within the best hyper parameters are residing because the ranges for each hyper parameter affect each other
heavily.
When comparing the choice of GPs over Bayesian Linear regression in the first place, it seems that there is no big
improvement. The RMSE on the bigger data sets – 5% and 10% – for both are in an equal domain. One thing to notice
is that in Bayesian Linear regression the amount of data points actually matters. For example, GPs with a plain Gaussian
kernel show similar results in the RMSE, not depending on the amount of selected data points. Besides that difference,
the hyper parameters for Bayesian Linear regression needed to be drastically readjusted depending on the size of the
data set. While for the GPs the hyper parameters could be kept almost constant for each kernel across the three tested
size of the data set. Obviously best values for the hyper parameters will vary, but the minima remain within in the same
range, when adding more data points to set. Such a different behavior for Bayesian Linear regression is not necessarily
bad, but will dampen increasing the data set size.
Looking at a completely different direction, a possibility might be not to extract features (area, width and height) in the
first place. Here experiments have shown that the resulting dimensions of 720000, with either zero or one as an entry, is
not feasible.

5.3 Theoretical Evaluation

One problem that naturally occurs due to the selection of random patches, is the non-optimality of some training patches.
Such patches may not inhabit the important patterns to predict the FCS successfully. On the other side they act as a
generalization trade off because they add noise to the training set.
Another problem which only concerns the non-probabilistic model, is the not existent measurement for uncertainty of
the prediction. With the help of a known uncertainty for the made prediction it is possible to predict from another
patch, if the uncertainty is higher than a specific value. This is already possible for the probabilistic equivalent because
the probability for each class is given. If there are no significant spikes in the probabilities, another prediction with a
different patch can be made. Because this could happen before the hand actual touches the object, the re-predicting is
done off-line and could be repeated arbitrarily times.
As a next step the actual output was observed instead of just comparing the RMSEs and the top 3 accuracy with an
interesting result. The neural network mostly predicts the same value of 3.117 (Baseline NN, 32 × 32 patches). The
reason for such a behavior is rooted in too much noise in the data. The previously as positive described effect of non-
optimal patches has its downsides in the long run. As a result, the networks do not make a prediction based on the patch
but rather act as a more sophisticated approximation of the mean for all training examples. Despite of that prediction,
such a behavior is not wanted but could be expected. When looking at Figure 4.4b, the distribution of the FCS could be
approximated with a Gaussian distribution with a mean of the predicted value 3.117. Knowing this faulty prediction, it
could easily be explained why the changes to the networks had no big impact, as the changes just adjusted a little bit the
behavior of how the mean of the distribution is approximated.
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As predicting the FCS is only one half towards the goal, the mass prediction needs to be tested as well. Here, not only
the plain output of a single image segmentation mask was used, but rather the output of multiple masks combined. The
mass for 100 masks in total were predicted by Equation 2.11, while the variance (Equation 2.12) was recorded as well.
With the help of the lowest variance the ten best predictions were selected of the 100 in total. The variance gauges the
uncertainty, hence, a low variance indicates a more certain prediction. In comparison to the FCS actually different masses
are predicted, as far as the correlation between input and output allows it, the limiting factors seem to be the unknown
density and the unknown volume.

5.4 Improved Photos

The question, which raises at this point, is, if the selection of patches could be improved, the NN could actually learn a
correlation between a patch and its respective FCS. To prove this, new pictures of the object were taken instead of using
the provided photos from the YCB Object set. The setup to take these pictures is shown in Figure 5.2. One important
difference in comparison to the provided images is the presence of a point light instead of a diffuse light source like in the
provided images. This new light source should enhance the surface of the objects more than with a diffuse light source.
Because the process could not be automated, only 10 to 15 high resolution photos per object were taken, 285 photos in
total.

Figure 5.2.: Setup for taking the improved images: The object is placed on a turntable (left) allowing to rotate it 360◦.
With the black curtain (right) the point light source is covered to reduce possible lens flare in the photo.

5.4.1 Patch Extraction

As previously mentioned (Section 3.0.2) the extraction from unprocessed images without a given image segmentation
mask is more complex. To solve this problem a rectangular area in every photo is selected by the operator, in which the
patch should be extracted for this specific image. After the rough area selection once again random patches are sampled
across this whole area. The possible patch is then transformed into gray scale. After the transformation the area of near
black pixels are calculated by thresholding all pixels. If the amount of near black pixels exceeds a given percentage, a
new patch will be sampled from the operator-defined area. For each operator-defined area 102 patches are extracted
ultimately leading to

285 · 102= 29070

patches. In order not to bias the NN towards the more photographed objects, a subset of images per object is selected
with the size of the least provided images 10 · 102= 1020 per object, a total data set size of

24 · 1020= 24480

photos was generated.
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(a) Smooth surface patch, from the object "Spoon": The corre-
sponding FCS was determined to 2.014.

(b) Rough surface patch, from the object "Sponge": The corre-
sponding FCS was determined to 5.88.

Figure 5.3.: Comparison between a smooth and a rough surface patch: The FCS for the smooth surface patch is lower in
comparison to the rough surface patch.

5.4.2 Patch Transformation

In order to enrich the surface of the patch, multiple transformations were applied on the image. As a first step, a bigger
patch of size 128× 128 is sampled from the operator-defined area instead of the final patch size. Remembering at this
point, the patch is a gray scale, the bigger patch is normalized. The normalization enhances the surface even more by
increasing highlights and decreasing darker areas. As the last step the patch is downscaled with a bicubic interpolation
to the desired patch size of either 16× 16, 32× 32 or 64× 64 for training the network. Extracting a bigger patch and
downsampling is needed because in some cases an initial smaller patch would not capture enough of the surface.
Two resulting exemplary patches with their respective FCS are shown in Figure 5.3. On the left side (Figure 5.3a) the
surface is smoother in comparison to the rougher surface on the right. Therefore, the left object has a lower FCS, while
the FCS for the right one (Figure 5.3b) is obviously higher. The NN should recognize this property as well and predict a
higher FCS, if a rough surface patch is given.

5.4.3 Retraining the Neural Networks

Before the NNs are retrained, the FCS for the object "Knife" and "Orange" were modified by hand. Because the knife, has
the same material like the spoon and the fork, accordingly its value was changed from 3.15 to 2.07. Similar procedure
for the orange, its surface is a bit smoother than the lemon but not as smooth as the banana’s surface. Hence, the FCS
was changed from 7.28 to 3.09. As a result, the distribution of all FCS became even thinner. The bins were adapted by
reducing the amount to six bins with centers at 1, . . . , 6, but still with a width of 1.
Due to the change of the data set, the network structure was adapted to it. As now gray scale patches are used, the
depth of one patch is reduced from three (RGB) to one. Because of the reduction of the input size and the resulting
less weights, the first convolution layer was increased in its kernel size and amount of kernels applied, as well as the
padding was changed to mirror instead of cutting of. In addition to these changes, a third convolution layer was added.
For all convolution layers overlapping pooling was still used. The first hidden layer size was increased from 32 to 96
nodes, while the dropout mechanism was kept. Instead of plain ReLUs, leaky ReLUs were used as the activation function
across each layer. The complete structure for the network (Figure A.3a) as well as the probabilistic output (Figure A.3b)
is shown in Figure A.3.
The new NN structures for the non-probabilistic model as well as the probabilistic one were trained on the new patches.
As before, the training on bigger patches (64 × 64 instead of 32 × 32) made no remarkable differences because both
patches were initially sampled with a size of 128 × 128 before being downscaled to their desired size. With patches
sampled at a size of 96× 96 downscaled to 16× 16, the error increased. Therefore, the network structure is trained on
patches of a size of 32× 32.
After training the best RMSE on the complete data set for the non-probabilistic model was 0.837, while for the proba-
bilistic model a top 3 accuracy of 0.8791 could be achieved. While the RMSE for the non-probabilistic model is equal
for the training and the test set, the top 3 accuracy for the probabilistic model drastically differ from each other. On the
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(a) M1: Final model on the improved images, patch size: 32×32,
metric: MSE

(b) Probabilistic M1: Final model on the improved images, patch
size: 32× 32, metric: top 3 accuracy

Figure 5.4.: Plots for the respective metric over the epochs trained for the final NNs when using the improved images:
The non probabilistic model (Figure 5.4a) shows no significant tendency to overfit the data while for the
probabilistic model the network starts to overfit towards the training set after ≈ 80 epochs. As previously
described the model is selected based on the best evaluation of the test set.

test set a top 3 accuracy of 0.99926 could be achieved while on the training set only 0.8085 was reached. The respective
evolution of the RMSE (Figure 5.4a) and the top 3 accuracy (Figure 5.4b) is shown in Figure 5.4.
When sampling for every object 100 random patches and predicting the FCS for these never seen patches, the mean
prediction of the non-probabilistic network per object is still around a seemingly fixed value, 2.5. But because it is not
constant in comparison to the old patches, their is a small correlation between the surface structure and the FCS. The
same applies for the probabilistic model, here the 2. class representing the area of a FCS between 1.5 and 2.5 is predicted
the most.
Nonetheless, from the current point of view, the problem might be rooted in too much noise in the data. While the
surface could be enhanced with the new patches, the main root for noise in the patches is the caption on objects like the
"Gelatin box" or the "Tuna fish can". In order to reduce the noise for such objects, they need to be removed from the data
set, resulting in a too small data set.

5.5 Final Prediction

As the new patches do not provide an image segmentation mask, for every new patch a random image segmentation
mask of the corresponding object is selected from the YCB Object set. With this image segmentation mask the mass is
estimated by using model M2 and making use of the lowest variance as previously explained.
In order to generate the data, the previously used split into test and training set for training the neural network was used
once again to predict the PDC for the test set. In Table 5.1 an overview of the objects which were used as the test set is
given. The FCS and mass prediction are multiplied in order to generate the final prediction of the PDC.
As seen in Table 5.1, the final prediction is not perfectly on point. The actual problem here is the non-variational FCS.
There is a small tendency towards the correct value but not a significant change across the tested objects. Thus, one has
to remember that the predictions were made for unknown objects on completely unseen new sampled random patches.
Another major problem which occurs by selecting a random set of test objects is the inadmissible mass of the wine glass.
The root of the problem are the provided image segmentation masks, where only a few pixels were recognized as the
actual objects. Hence, the total area is less than the actual area and the width as well as the height of the wineglass could
not be correctly determined.
In the very beginning of this Chapter it was stated that the prediction of grasp forces is possible. After putting the results
in perspective an evaluation on the real robotic hand was done.
The final predicted PDC is then set on the robotic hand as the desired PDC. The split of the total sum is done according
to Section 3.0.1. For each object 10 trails were executed and the success rate is shown in Table 5.1. A trial is counted as
successful, if the hand does not lose contact with the object within two seconds. In this time the slip controller should be
possible to stabilize the grasp.

27



Table 5.1.: Prediction for testing on the real robot: A trail is counted as successful, if the hand does not lose contact within
two seconds. Hence, in this time the slip controller should be possible to stabilize the grasp.

Object
Cont. FCS

True FCS Pred. Mass True Mass Pred. PDC True PDC Success %
Disc. FCS

Knife
2.45451

2.073 20.00 31.0
49.09

64.263
60

1 20.00 10

Strawberry
2.67979

3.8687 8.418 18.0
22.558

64.263
30

2 16.836 10

Wine glass
2.46344

3.196 -17.78 133.0
327.638

425.035
90

2 266 50

Lemon
2.778

3.927 55.991 29.0
155.543

113.889
70

2 111.982 50

As seen in the Table 5.1 the success on the test set is moderate. As both predictions, by the non-probabilistic and
probabilistic model, have a relative high error rate, this moderate result could be expected. To use such predictions in
a real robotic system it is necessary to incorporate a form of safety margin as already proposed in [5]. With the help of
such a safety margin the, most of the time to low predicted, PDC could be bumped up to the potentially correct value. As
in Section 4.3.2 the third method was chosen to convolute the PDC into a single value, the PDC to predict is some form of
a lower bound. Therefore, if a safety margin is applied to the predicted PDC, it is not likely to enter the area, in which the
object may get deformed.
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6 Outlook
As this thesis is one of the first approaches in this field, multiple things were simplified. Regarding the grasp itself, it was
assumed that the force on the object is always normal onto the object. Such an assumption is not feasible to hold in a
non-synthetic environment. Here the measured PDC values might be split along the tangential axis as well as the normal
axis of the surface. As only the normal part is the main interest for friction, it must be taken care of how much the normal
part accounts into the measured PDC.
Besides that, a more advanced friction model could be used, in order to allow a preciser prediction. With such a friction
model the physics can be modeled in a more sophisticated way, resulting in a more complex model, which can be learned,
representing the reality better.
Another problem, which can definitely be solved in the future, is the rather small selection of objects. In the YCB Object
set a total of 104 objects are provided, but only 24 objects (≈ 1/4) were used for this thesis. But using all objects, might
bias the models, because sub object sets, like ten marbles (counting as ten single objects), predominate objects, which
only occur one time. Therefore only one object of such a sub object set should be used. In addition to that the already
mentioned problems (Figure A.1) still occur for some objects, which might withdraw them from the data set.
To improve the FCS prediction new photos were taken in a different lighting environment. As a result, the predicted FCS
were improved from constants to moderate adaptive values for the FCS. Currently only ten to fifteen photos were taken
per object, thus, the amount of the new photos can be increased in order to extract more patches, resulting in a bigger
data set. When the mass is still assumed to be known, the resulting accuracy of the predicted PDC should increase.
An extension to the fixed patch size could be done by using the concept of spatial pyramid pooling introduced by [29].
With this new form of pooling different patch sizes can be used for the same network. Such a new form of input is very
interesting, because using different patch sizes, does not restrict the robot to have the same distance to the surface of
different objects. One thing to keep in mind with varying patch sizes, is the difference in scaling. From the current point
of view, it is important that the patches still cover the same physical area. If the robot can extract the same physical area
across different distance with the same camera, the patches will obviously vary in their size depending on the distance to
the object. Spatial pyramid pooling would help here by allowing to feed these different patch sizes into the network.
Regarding the segmentation into different bins for encoding the one-hot vector, a more sophisticated approach would be
to explicitly cluster the data points available with an off-the shelve algorithm like expectation-maximization and construct
based on the clusters the one-hot vector. Thus similar object surface materials may be identified as a cluster, for example
cardboard, painted wood or ceramic.
Like previously discussed, relaxing the assumption of the mass known, increases the error, considering the prediction of
the mass is not error-free. As a first step the feature extraction could be improved in order to capture more complex
features. With the help of more complex features the trained model should generalize better.
A different direction would be, not to use the image segmentation mask at all, removing the need of it, and to calculate
the edges of the object based on the photo. From this point the edges can be used to roughly estimate the volume of the
object. With the help of the known volume it should be possible to decrease the RMSE already. A simplified approach
could be, instead of detecting the edges, searching for basic shapes as a boundary with their scaling in the image. For
these shapes the volume is already known and does not need some complicated calculation based on the detected edges.
But at least one problem still remains for the two approaches, the density of the object is still unknown. One solution
for this rather big problem would be to have some form of database, were the material can be looked up. Having
such a database could improve the prediction of the FCS as well, because the FCS could be stored together with the
density for different materials. Accordingly, only the material besides the shape of the seen objects needs to be predicted.
Nonetheless, from the current point of view storing every possible material does not seem to be the desired solution.
Continuing the separate ideas of combining both predictions into one material and the previously discussed clustering of
the FCS, a discrete approach across both dimensions, the FCS as well as the mass, could be tested as well. As a result,
each cluster has a fixed FCS as well as a fixed mass. Now the goal is to predict the corresponding class from the whole
photo. This approach is similar to cluster only based on the PDC. But with the extra given split (Chapter 3) between mass
and FCS, one could assume that the resulting clustering suits the data better. Following this path is open for discussion.
Last, another application of the formulas is given, as the described split is not fixed to predict the PDC. If the variables in
Equation 3.3 are reordered, the robot might look shortly at the object, estimate the FCS, then lift the object and adjust
the pressure until the grasp is stable. Now with the help of the known PDC, the mass of the object could be estimated by

m=
PDC

FCS
.

In the same manner the FCS could be estimated, when the mass is predicted in advance.
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As a conclusion, the proposed methods showed the existence of a correlation between the photo and the grasp force.
Hence, it is feasible to predict the grasp forces, but as outlined before, there is room for improvement at multiple points
in the suggested method.
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A Appendix

A.1 Formulas

From [21], given a marginal Gaussian distribution for x (Equation A.1) and a conditional Gaussian distribution for y
given x (Equation A.2) in the form

p(x ) = N
�

x | µ, Λ−1
�

(A.1)

p(y | x ) = N
�

y | Ax + b, L−1
�

(A.2)

the marginal distribution of y is given by

p(y) = N
�

y | Aµ+ b, L−1 +AΛ−1AT
�

(A.3)

From [21], suppose x is a D-dimensional vector with Gaussian distribution N (x | µ, Σ). Now x is split into two parts
x a ∈ RM and x b ∈ RD−M

x =





x a

x b



 .

The mean vector µ

µ=





µa

µb



 .

as well as the covariance matrix Σ

Σ=





Σaa Σab

Σba Σbb



 .

are obtained in a similar way. For such a split the conditional distribution p(x a | x b) is known to be a Gaussian distribution
N
�

x a | µa|b, Σa|b
�

with the parameter defined as:

µa|b = µa +ΣabΣ
−1
bb

�

x b −µb

�

(A.4)

Σa|b = Σaa −ΣabΣ
−1
bbΣba (A.5)
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A.2 Problematic Grasps

(a) When the most front part of the finger tip is pressed no
change in static pressure can be measured.

(b) If the object is too big, it might not only touch the finger tip
but other parts of the hand as well. Applied pressure through
other parts can not be measured.

(c) The object is just too heavy. (d) There is no reasonable finger placement onto the object to
solely be a force grasp.

Figure A.1.: Problems that might occur when grasping an object. Problem a) and b) could be resolved by grasping the
object again. Problem c) and d) discard the objects from the possible object set.
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A.3 Object List

Table A.1.: All 24 objects used for training

Object ID/Name Mass [m] FCS PDC Photo

Chips can 205.0 2.48 507.91

Cracker box 411.0 1.46 599.34

Tomato soup can 349.0 2.11 736.16

Tuna fish can 171.0 2.04 349.53

Pudding box 187.0 1.63 304.26
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Table A.1.: All 24 objects used for training

Object ID/Name Mass [m] FCS PDC Photo

Gelatin box 97.0 1.05 102.20

Potted meat can 370.0 2.81 1038.97

Banana 66.0 2.72 179.84

Strawberry 18.0 3.87 69.64

Apple 68.0 3.53 240.37
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Table A.1.: All 24 objects used for training

Object ID/Name Mass [m] FCS PDC Photo

Lemon 29.0 3.93 113.89

Peach 33.0 2.96 97.82

Orange 47.0 7.28 342.11

Plum 25.0 2.82 70.61

Wine glass 133.0 3.20 425.04
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Table A.1.: All 24 objects used for training

Object ID/Name Mass [m] FCS PDC Photo

Sponge 6.2 5.88 36.47

Fork 34.0 1.85 62.85

Spoon 30.0 2.01 60.44

Knife 31.0 3.16 97.92

Spatula 51.5 2.71 139.31
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Table A.1.: All 24 objects used for training

Object ID/Name Mass [m] FCS PDC Photo

Scissors 82.0 2.70 221.21

Large marker 15.8 4.07 64.29

Small marker 8.2 3.94 32.33

Phillips screwdriver 97.0 2.62 253.96
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A.4 Neural Network Structures

(a) M1: Baseline model, patch size: 32× 32 (b) Probabilistic M1: Baseline model, patch size: 32×32

Figure A.2.: These Neural Network models serves as the baseline for all following models
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(a) M1: Improved images model, patch size:
32× 32

(b) Probabilistic M1: Improved images model,
patch size: 32× 32

Figure A.3.: The final NN structure for the improved images
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A.5 Neural Network Convergence

(a) M1: baseline model, patch size: 32× 32 (b) M1: baseline model, patch size: 64× 64

(c) M1: 2. model, patch size: 32× 32 (d) M1: 2. model, patch size: 64× 64

(e) M1: 3. model, patch size: 32× 32 (f) M1: 3. model, patch size: 64× 64

Figure A.4.: Plots for the loss over the epochs trained for all NNs
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(g) M1: 4. model, patch size: 32× 32 (h) M1: 4. model, patch size: 64× 64

(i) M1: 5. model, patch size: 32× 32 (j) M1: 5. model, patch size: 64× 64

(k) M1: 6. model, patch size: 32× 32 (l) M1: 6. model, patch size: 64× 64

Figure A.4.: Plots for the MSE over the epochs trained for all NNs
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